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CHAPTER 1

INTRODUCTION
1.1 Motivation for the Heat Transfer Modeling

Numerical heat transfer is a key issue in nuclear reactor analysis. For a high
temperature energy conversion system, energy from the nuclear fission process is
transferred to the coolant system by conduction, convection and radiation. This study is
especially focused on numerical analysis to solve the heat transfer problems in nuclear
reactor core design, which include the Heterogeneous Gaseous Core Reactor [HGCR],
High Temperature Gas Cooled Reactor [HTGR] and the XNR2000 nuclear rocket. Table

1-1 presents the applications of numerical modeling.

Table 1-1 Applications of numerical modeling.

Reactor Fluid Flow Heat Transfer Thermal Boundary

HGCR UF, gas Convection & Radiation Gas deposits heat to wall

HTGR Helium gas Convection Gas removes heat from wall
XNR2000 | Hydrogen gas Convection Gas removes heat from wall

A Heterogeneous Gas Core Reactor uses a gaseous fissile material as fuel for power
generation.m] This allows for power generation at temperatures much higher than the
melting point of solid fuel nuclear reactors. Power generation and power conversion at
very high temperatures can potentially reduce the system mass and improve the specific
impulse performance of a nuclear thermal rocket. One of the most challenging issues

related to design and operation of gas core reactors is the containment of the high




temperature fissioning plasma. The wall cooling is the most important issue in design of
gaseous core nuclear reactors. The heat transfer process involved in an ultrahigh
temperature gas core reactor systems is characterized by the convective flow of a radiating
gas. Uranium compound gases at pressures in the range of 10 to 40 atm are optically thick.
At temperatures close to 3500°K which is the typical exit temperature of the reactor core in
a more recent design, the radiative heat transfer rate in these opaque gases is higher and
comparable with the convective heat transfer rate.’”) Therefore, the heat transfer analysis of
a fissioning gas must include both convective and radiative transfer. The flow and radiation
transport equations must be solved simultaneously in order to determine the temperature
distribution and heat transfer rate. Figure 1-1 shows the high temperature vapor reactor
with advanced energy conversion system.

The HTGR primary system is composed of several loops, each housed within a large
cylinder of prestressed concrete.* The flow is directed downward through the core by a
circulator mounted above the steam generator in the cold leg. The reactor vessel and
steam generator are connected by a short, horizontal cross duct. The coolant from the core
exit plenum is directed laterally through the interior of the cross duct into the inlet of the
steam generator. Coolant from the steam generator and circulator is directed laterally
through the outer annulus of the cross duct into the core inlet plenum. The HTGR
primary coolant flow path is illustrated in Figure 1-2.

XNR2000 is an expander cycle nuclear rocket engine powered by a fast-spectrum
cermet-fueled nuclear reactor that heats hydrogen to a maximum propellant
temperature.["] The reactor is comprised of an outer annulus core of Mo-UO, prismatic
fuel elements and a cylindrical inner core of W-UO, prismatic fuel elements. The
baseline XNR2000 reactor core consists of a total of 151 prismatic fuel elements of 55
cm in active length. The core is arranged such that an inner-outer core configuration is
obtained with 61 inner core fuel elements and 90 outer core fuel elements.'*! The

purpose of inner-outer core configuration is to provide a folded flow path for the



hydrogen propellant flowing upward through the outer core and downward through the

inner core. The XNR2000 coolant flow path is shown in Figure 1-3.

1.2 Computational Method for CFD and Heat Transfer

The development of heat transfer modeling has been a major area of research for
several decades in the nuclear thermal hydraulics field. Most people attribute the first
definitive Computational Fluid Dynamics (CFD) work to Richardson in 1910, who
introduced point iterative schemes for numerically solving Laplace’s equation and
bihamonic equation. He clearly defined the difference between problems which must be
solved by a relaxation scheme. In 1918, Liebmann presented an improved version of
Richadson’s method. Liebmann’s methods used values of the dependent variable both at
the new and old iteration level in each sweep through the computational grid. The
beginning of modern numerical analysis is attributed to a famous paper by Courant,
Fredrichs and lewy,m the CFL, frequently seen in the literature. In that paper, uniqueness
and existence questions were addressed for the numerical solutions of partial differential
equations. It is original source for the CFL stability requirement for the numerical
solution of hyperbolic partial differential equations. However, limits to the above method
still existed for steady-state and low temperature conditions at that time.

In 1940, Southwell introduced a relaxation scheme which was used in solving fluid
dynamic problems where an improved relaxation scheme was required. During the
decades of 1940s and 1950s, Southwell’s methods were generally the first numerical
techniques introduced to engineers. Allen applied Southwell’s scheme to solve the
incompressible, viscous flow over a cylinder. They used the empirical or semi-empirical
information, wall function for the heat transfer studies.l*) However, this approach is too
sensitive to the near wall grids and inaccurate at the flow separation region. Therefore, a

highly-stretched fine grid near wall boundaries is required to solve unsteady and turbulent



flow problems. Unfortunately, the fine grid yields computational difficulties in terms of
the stability limitation and the computation time. To remove the time step limitation, the
fully-implicit numerical schemes were developed in the mid-1970’s by Briley and
McDonald."”

Professor John von Neumann developed his method for evaluating the stability of
numerical methods for solving time-marching problems. O’Brien, Hyman and Kaplan
later presented a detailed description of von Neumann method. This paper is significant
because it presents a practical way of evaluating stability. At same time, progress was
being made on the development of methods for both elliptic and parabolic problems.
Peaceman and Rachford developed a new family of implicit method for parabolic and
elliptic equations in which sweep directions were alternated and the allowed step size was
unrestricted.”” But those methods cannot be used to handle the discontinuity problems,
such as shock capture problem. It was difficult to solve transonic and supersonic fluid
flow problems.

Early efforts at solving flows with shock waves were part of Lax’s approach.m Lax
and Wendroff introduced a method for computing flows with shocks which was a second-
order scheme that avoided the excessive smearing of earlier approaches. MacCormack
has devised an implicit scheme that requires only the inversion of block bidiagonal
systems rather than block tridiagonal systems, thus yielding savings in computer time and
storage requirements. During the past 20 years, the explicit methods were developed to
solve the compressible Navier-Stokes equations which include the Hopscotch method,
DuFort-Frankel method, Brailovskaya method, Allen-Cheng method, Lax-Wendroff
method and the MacCormack method.!'”! All of above methods, except the MacCormack
scheme, are first-order accurate so that they cannot be used to accurately compute the
time evolution of a flow field.”™™ In addition, all of the methods have a stability
restriction which limits the maximum time step. The allowable time step is given by the

CFL condition, which for 2-D problem becomes
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where a is the maximum eigenvalue. For the other schemes, analytical stability conditions
cannot be obtained™ and a numerical investigation is presented in Figure 1-4. In this
graph, the schemes are stable in the region below the corresponding curve. Figure 1-4
shows that the MacCormack method presents the best stability.

The MacCormack is the most popular two-step Lax-Wendroff method for solving
problems with shock-capturing schemes.®! This method is designed to solve time-
dependent equations such as the complete Navier-Stokes equations without any artificial
dissipation term or limiters. It is based on the second-order accurate explicit predictor-
corrector method but adds an implicit procedure in the predictor-corrector sequence for
points at which the local CFL number exceeds the stability limit. The method has been
applied to two-dimensional internal supersonic flows, two-dimensional external flows,
external axisymmetric flows and three-dimensional flows over a biconic body with a
compression ﬂap.[zsl This scheme was applied to either the complete or thin layer forms
of unsteady Navier-Stokes equations.

MacCormack’s method is one of the most efficient of the second-order schemes from
point of view of operation count. This approach is well adopted for time-dependent
problems; it should be inserted in a multi-grid framework. The investigations on multi-
grid Lax-Wendroff-type schemes can be found in reference [17].

The important conclusion is that among all second-order viscous Lax-Wendroff
schemes, MacCormack scheme, with flux splitted operators, presents the best stability,

consistency and efﬁciency.lzs]



1.3 Objective and Overview

The main objective of this study is to develop a computational fluid dynamics and
heat transfer model for convective, conductive and radiative heat transfer in high power
density gas cooled and gaseous core nuclear reactors and the XNR2000 nuclear rocket
core. To achieve this goal axisymmetric, thin-layer Navier-Stokes equations associated
with 1-D integral approximation, Rosseland’s diffusion approximation and algebraic 2-
layer eddy viscosity turbulence model are used to simulate heat transfer in nuclear reactor
cores. An implicit-explicit, finite volume, MacCommack method in conjunction with
Gauss-Seidel line iteration procedure is utilized to solve the governing equations. An
enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be
obtained with the applications of a wall heat flux. A two-dimensional method based on
finite element technique is used to investigate the geometric behavior of a nuclear reactor
fuel elements.

Chapter 2 describes MacCormack implicit-explicit model, Lomax and Baldwin’s
two-layer algebraic turbulence model, Rosseland’s diffusion model, wall heat transfer
model, enthalpy rebalancing scheme and the thermal conduction model. Chapter 3
provides the thermophysical properties of dissociated hydrogen, helium and UF, gases.
Chapter 4 presents the assessment and validation of the numerical model with separation
angle and drag force calculations around a sphere suspended in a cylinder, and heat
transfer correlation comparison. Chapter 5 presents the applications of numerical models
in gaseous core reactors, gas-cooled reactors and the XNR2000 nuclear rocket cores.

Finally, the conclusions of this thesis are described in Chapter 6.
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CHAPTER 2
NUMERICAL MODELING

2.1 Governing Equations

Combined convective and radiative heat transfer of simultaneously developing
turbulent flow in a smooth circular tube with nongray gases is numerically modeled.
Based on the physical considerations, the two-dimensional axisymmetric thin-layer
compressible Navier-Stokes equations in strong conservation law form with Rosseland’s
approximation radiative heat transfer model and the algebraic two-layer eddy viscosity
turbulence model are used to simulate the fluid flow and heat transfer in the gas core
reactor. In order to derive the governing equations, the following assumption are
made:!"

1. The axial viscous dissipation and thermal radiation are negligible compared with
the radial viscous dissipation and thermal radiation.

2. The axial heat conduction is negligible.

3. The gas absorbs and emits radiation but does not scatter.

4. The wall is a gray diffuse emitter and reflector.

5. There is no dissociation or phase change for UF, gas in the high temperature
range.

Based on these aséumptions, the time-dependent, mass-averaged and compressible

. . . . . . . 28
Navier-Stokes equations in strong conservative and axisymmetric form are given as:*!

11
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In the above formulas,

12

2-1)

(2-2)

(2-3)

2-4)

u and v are the velocity components in z and r directions,

respectively, p is the density, P is the pressure, pur is the total viscosity, q". is the

conductive heat flux, and e is the total energy per unit volume which is related to the

internal energy € and kinetic energy.
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1
e= pl:s + 5(u2 + vz)] (2-5)
The total viscosity p is given as the sum of its molecular component p, and

eddy component pi.:
H=H, + H, (2'6)

The eddy viscosity is obtained from the turbulent eddy viscosity model proposed by
Baldwin and Lomax.!”] The heat flux term includes the conductive heat flux term, qc” ,
and radiative heat flux term, q,” . Based on Fourier’s law, the conductive heat flux can

be written as:

g 2-7
qc - f dr ( = )
where
“m HE
eoflee k) e

Typical values of the molecular and turbulent Prandtl number at standard condition

are 0.9 and 0.72, respectively. The radiative heat flux term is presented in a later section.
The complete set of Navier-Stokes equations (2-1) includes one continuity
equation, two momentum equations, and one energy equation. In order to get six
unknowns, p (density), u (axial velocity component), v(radial velocity component), e
(total energy per unit volume), P (pressure) and T (temperature), two more supplement
equations which are given by perfect gas law are required. Under perfect gas law, there

are the following relations:
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C
P=pRT ¢=CT h=c,,Ty=C—” (2-9)

4

when using above relations, two additional equations are obtained as follows:

P=( —l{e—%p(u2+v2) (2-10)

G- e 1(u2+v2)

T="% %2

Hence, combining above equations (2-1), (2-10) and (2-11), a set of governing

@2-11)

equations is formed.

The Navier-Stokes equations are the coupled nonlinear mixed hyperbolic-parabolic
system of partial differential equations. At high Reynolds number condition, these
equations become stiff and are difficult to solve. Reynolds number is a measure of the
ratio of the inertial to the viscous forces of a fluid. The viscous terms which cause the
system to be parabolic are of the order of the reciprocal of the Reynolds number in
magnitude. At high Reynolds number the system is almost everywhere hyperbolic, the
viscous terms are negligible except in the boundary layers. Within these layers, the
viscous terms are significant and control the important phenomenon of boundary layer
separation. The disparity in magnitude at high Reynolds number between the inertial and
viscous terms causes the system to be mathematically stiff. The only way to solve the
complete Navier-Stokes equations is numerical procedure which will be discussed in the

later sections.

2.2 Numerical Procedure

A hybrid implicit-explicit numerical method based on the finite volume

discretization approach is used for computer implementation. The finite volume method
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uses the integral forms of conservation equations on the finite cells. The equations are
approximated by summing the fluxes of mass, momentum and energy from neighboring
cells into each cell, thereby partial differential equations are changed to the discrete

equations.

To derive an implicit form, equation (2-1) is differentiated with respect to time , t,

oU ou oU (aU)
a(atj aA‘(az] aB’(at] 9B, ot oH

ot * 1074 M or - or +E

(2-12)

where A,, B; and B, are the Jacobians of F;, G; and G, with respect to U, they are,

= % (2-13)

B = ? (2-14)

B, = Z(;” (2-15)
Letting

At(%)n = AU" (2-16)

At@—lj]n = AH" (2-17)

At(%%jm =8U™ (2-18)



16

an implicit difference approximation to Equation (2-12) is

|— DA D -‘ n+l n n
LI+At—+A —A—r—J U = AU, + AH, (2-19)

where

In the above equation, D indicates a difference operator. The forward difference

operator D, and the backward difference operator D, are represented as follows:

D,(4),, =(4),,,,-(4),, (2-20)
D, (4),; =(4),,,, - (4, (2-21)
D_(4),, =(4),; - (4, (2-22)
D_(4),; =(4),, -(4),,, (2-23)

In order to more realistically approximate the physics of the governing
equations, improve efficiency for the implicit scheme and reduce the numerical errors, a
flux vector splitting technique is used in this study. Steger and Warming pointed out
that!*!

F=AU (2-24)

G = BU (2-25)
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The Jacobian matrixes A and B con be diagonalized by similarity transformation S,

and Sy as follows

[_u 0O 0 0 ]
sl "IO u+c 0 0 iS 56
=>"00 0w o ™ (2-26)
o0 0 0 u-c]
lv 0 0 0 |
Beg- _IIO v 0 0 |S
Y00 0 vee 0 ™ (2-27)
00 0 v-cl
with
(1 0 o0 -1/¢]
0 pc O 1
S=le o 1 o (2-28)
10 —pc O 1]
1 0 0 -1/c?]
. 01 0 0 12
»7lo 0 pe 1 (2-29)
0 0 -pc 1
‘F 1 0 0 011
—ulp 1/p 0 0
_|™ I .
YSlwvip 0 1/p 0] (2-30)
L op  -up - B

where c is the speed of sound, 0L=1/2(u2 +v2), B=y-1, and y is the ratio of the specific

heats of the gases. In general some of the elements of the diagonalized matrix above are
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positive and others are negative. Their signs determine the direction of information travel.

So we can define the following matrices:

A=A + 4
[+
2

— S-l w—l

-1, -1
S.w

B=B +B

[v+u
2

0

-1 -1
Syw

0 0
u+c+lu+d
2 Olui
u+
0 2
0 0
0 0
u+c—lu+d
2 Olzd
u-—-
0 2
0
0 0
v+
5 0
v+c+v+d
0 0
0 0
v—
> 0
0 v+c=lv+d
0 0

[26,27]

0

0

v—c+v—d

0

v—c—lv—(

2

wS, +

5, (2-31)

wS, +

y (2-32)




Using the direction of information travel, the flux crossing the surface separating

volumes i,j and i+1,j is
F:’+l/2,j = A+Ui,j + A-Ufn,j (2-33)

Gi+1/2,j = B+Ui,j + B-Ui+1,j (2-34)

Considering the flux vector splitting technique and performing the operations
indicated in Equation (2-19 ), we obtain the following equation in terms of block matrices
Cl’ Cz, C3, C4 and Csl

CRU, ,,, +C8U,, +CHU, , , +CRU,, ; +CRU,_, , =AU/, + AH], (2-35)

where

4, . A .
C =1+At XZ‘I—I/Z,]+—A—Z'I+1/2,_] +

B .. B, . . MN . MN ..
At ;1,]—1/2+Zr—z,j+l/2+ A iL,j-1/2+ A i,j+1/2

B MN
C, =—-Af E‘l,]+1/2+’Fl,]+l/2

B, .. MN .
C,=-At EZ,]—I/z-}- A i,j=1/2

C, = An{f;'ﬂ/z )
4§ =7 AZZ »J
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lro 0 0 01|
"]0 0 A+2u O
1_0 up v()»+2p) KJ
[ 1 (1) 0 0]
= —~ 0 0
b 1
N= = o — o
P P
o-e -u —v 1
L p P P P

Equation (2-35) can be solved by line Gauss-Seidel iteration with alternating

[29

sweeps in the backward and forward z-directions, V'as shown in Figure 2-1.

Fork=1,3, ...
Backward Sweep:
C26U,.'fj+, + C,SU,.'fj +C38U,.'fj_l + C‘,SU,.’iU +C56U,.'i']"j = AU}, + AH], (2-36)
and
For k=2, 4, ...

Forward Sweep:

CRUM +CRUN + CRUSY +CRUS, , +CRUS, = AU, + AH}, (2-37)

ij+l -

The above implicit block matrix equation can be put the following form:
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—(Cz)j, (Cl)j, (Cs)j, -FSU'JJ —AUI’,,‘I'*'AHIJI—(CA),»J,SUMJI‘(Cs ,J,SU.'-L,/T

: - : (2-38)
(Cz)j (CI)J (CZ)J BU,.', = Al/l.}'+A[{i,1_(Cl),J§(Jr+l./ _(CS),JSU:—I,/‘

(Cz)z (C1)2 (C3)2 6U"-2 AU.,z +AH-‘,2 _(CA),JSUHLZ _(Cj),—.ZSU'-lJ
-E !

L __SUi,l- L 0 ]
where
[1 o 0 0]
lo 1 0 0l
E = I
|0 0 -1 0f
lo o o 1]

The last equation in Equation (2-38) is used to set the boundary conditions
which will be discussed in the later section.

With the above numerical schemes the Upwind, Hybrid Explicit-Implicit
equations have the following form:

The predictor step

n I-D+F; D+(Gi_GV) Tl
AU!, =-A + —HJ
Az Ar

i

"ln

D.A. D.4 D.B D.B_ A 1
+ =) - (8G,) | UL = AU, + AH,
iJ

T+ At (——+——2)+ A1(
Az Az Ar Ar

url =urn, +8Ur (2-39)

The corrector step
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.. IbE D(G G) . ™
AU = ArtAz

iJ

1+At(D*'A“+D"A*)+A1(D+'B'+D"B* ﬂ(éSG TSU"*‘—AU”*‘ AH"
Az Az Ar Ar ) or ”)J,.,j hj =AY AR

n+ 1 n n+ n+
U= S WL+ Ury +8Uh (2-40)
where 8U; J"H is calculated from Equation (2-38).

2.3 Turbulence Model

Turbulence modeling is the most important factor influencing the convergence of
the Navier-Stokes equation solver, which is classified according to the number of
supplementary partial differential equations. This number ranges from zero (algebraic
model) to two (x-¢ model). The turbulent shear stresses in the mean-momentum
equations are replaced by product of an effective viscosity and a mean rate of strain. The
zero-equation model uses algebraic formulae to find the turbulent viscosity, which
involve only properties of the mean velocity profile as unknowns. This is implied that the
mean motion is unaffected by turbulence intensity and the length scale, which can be
specified by an algebraic equation. One- and two-equation models obtain the velocity
scale from a solution of the modeled form of turbulent kinetic energy equation and the
specified length scale equation. In this study, the algebraic model has been used to yield
faster convergence at reasonable accuracy.

The algebraic turbulence model used in this analysis is a two-layer algebraic eddy

viscosity model proposed by Baldwin and Lomax.””) The effects of turbulence are
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simulated in terms of the eddy viscosity coefficient, p,, which is calculated for an inner

and an outer region

M _<l"|'innerz Sle
pm:lerz > Zb

where z is the normal distance from wall, and z, is the smallest value of z at which
values from the inner and outer formulas are equal.
For the inner region, the Prandtl-Van Driest formulation for turbulent viscosity

is used:

(B)amer = PRV 1= € GO o] (2-41)

where o is the vorticity which is given by

ol =222
= 0z or

and
y+ _ Vv pw‘twy
K.
At =26

where t,, p, and p, are the local shear stress, density, and laminar viscosity

evaluated at the wall.

For the outer region, the Clauser formulation for turbulent viscosity is used:

(}’1’! )ouler = kccp P kaeFkleb (y) (2’42)
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where k is the Clauser constant, C, is an additional constant, and

. Yax Fruax }
E, . = mln{ 2-43
wake CWKyAMXulz)IF ! Fyyy ( )
The quantities yypax and Fpysx are determined from the function
¥
F(y) =oll1-e %] (2-44)

In wakes, the exponential term of Equation (2-44) is set equal to zero. The
quantity Fy.x is the maximum value of F(y) that occurs in a profile and ypyax is the

value of y at which it occurs. The Fy, () is the Klebanoff intermittency factor given by

Fmb(y):[ns{_cyuﬂ ] (245)

The quantity up is the difference between maximum and minimum total
velocity in the profile

Y (e W (v

) (2-46)
The constants used for this model have been determined by requiring agreement with
the Cebeci formulation for a constant pressure boundary layer. The values determined are
Cep=1.6, C=0.25, Cye, =0.3, ¥=0.4 and K=0.0168.
In effect the voticity o is used to determine the length scale, so that the necessity for
finding the outer edge of boundary layer is removed. This model has the advantage of
avoiding the necessity for finding the edge of the boundary layer and exhibits good

accuracy.
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2.4 Diffusion Model for Thermal Radiation

Under high temperature conditions of gaseous core reactor the radiative heat transfer
rate in these opaque gases is comparable with the convective heat transfer rate. Therefore,
the heat transfer analysis of a fissioning gas must include both convective and radiative
heat transfer. The flow and radiation transport equation must be solved simultaneously to
determine the temperature distribution and heat transfer rate. For such numerical model,
radiative and convective heat fluxes are combined in the energy equation. Although there
are several ways to obtain the radiative heat flux, for example, the Monte Carlo method,
the zoning method, and the p-n approximation, the Rosseland diffusion approximation is
widely used because it is simple to formulate and calculate. In order to use the Rosseland
diffusion approximation the following assumptions are required:

(1) The flow is an opaque and gray dense medium with only absorption and
emission.

(2) The radiation arriving at any location comes only from the immediate
surroundings because any other radiation is absorbed before arriving at that location.

(3) The particles are locally in thermal equilibrium and near velocity equilibrium.

(4) The axial radiative dissipation is neglected.

Under above assumption the radiative heat flux is proportional to the temperature

gradient and can be written as:1*7

q, =-K,VT (2-47)

where K, is the radiative conductivity and is defined by!*’!

1607,
3a,

r

(2-48)
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where ag is the Rosseland mean opacity and o is the Stefan-Boltzmann constant (5.67*10°

8 W/mz.K4). To obtain the Rosseland mean opacity ag, the spectral absorption coefficient

is averaged over the entire frequency range as the following:[1 1

OB
Ta; av
== Tom (2-49)
. hd d
oa, orT Y

where v is the photon wave number, B, is the Planck function, a, is the spectral
absorption coefficient, and n is the real index of refraction. Direct calculation of the
Rosseland mean opacity for UF, is difficult due to the lack of experimental data for the
spectral absorption coefficient of UF,. However for this study, the Rosseland mean

opacity can be estimated by!'2

a, = No,, (2-50)

where N is the molecular number density of the gas and o, is the photon collision cross
section per molecule. For UF, gas o, is estimated to be equal to 2.76x10% m?. 10 Using

the assumption of the perfect gas law the molecular number density can be estimated as

P
__P 2-51
T (2-51)

where x is the Boltzmann constant (1.3806*10'23J/K), p is the gas pressure, and T is the

gas temperature. Therefore, the radiative conductivity can be written as

160x
K = T
36 ,.p (2-52)

Using the estimated opacities the Rosseland approximation leads to a considerable
simplification in the expression for radiative heat flux. The radiative heat flux is added to

the Equations (2-3) and (2-4) to establish the balance of the energy equations. Since
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radiation leaving from the surface is not taken into account, the coefficient of radiation

conductivity in Equation (2-52) has to be changed from 16/3 to 8/3.1")
2.5 _Wall Heat Transfer Model

The system is limited to smooth, straight tubes within which the fluid flow is
turbulent. In the system, two boundary conditions, constant wall temperature and constant
wall heat flux on the outside surface of the tube, are of particular interest and considered
here. There are two ways to describe the convective heat transfer into the wall boundary.

One way is to use Newton’s cooling law. That is
¢"=hT,-T,) (2-53)

where h is the convective heat transfer coefficient or so-called unit thermal conductance,
which is not a material property as thermal conductivity. It is a complex function of the
composition of the fluid, the geometry of solid wall and the hydrodynamics of the fluid
motion, in particular, the temperature distribution near the solid wall. So it is impossible
to estimate the heat transfer coefficient without solving the Navier-Stokes equations.

The other way is to apply Fourier’s law. That is

. k(ﬂ] (2-54)
T ="%ar gas )

where k,, is the thermal conductivity which is evaluated at the wall temperature. The
temperature gradient in equation (2-54) is calculated using the wall temperature and

adjacent cell temperature. It may be numerically written as

x (2-55)
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The condition of the above equation is that the temperature distribution near the wall
has to be linear. This means that equation (2-55) can only be applied in the viscous
sublayer.

The turbulent boundary layer is composed of three different sublayers, such as
viscous sublayer, buffer layer and turbulent core, which is presented in Figure 2-2. In the
viscous sublayer, heat transfer is dominated by diffusion. The temperature distribution is
linear, as shown in Figure 2-3. In order to use equation (2-55), it is important to
determine the thickness of the viscous sublayer which may be estimated by the following

relation:[”]

7294z

b= (Rez)o.9

) (2-56)

The magnitude of 8y, is about 2-5 pm. This means that at least 3 cells have to locate in
the 2-5 pm region near the solid-fluid interface. A simple sketch of finite volume mesh to

express the boundary index system is shown in Figure 2-4.

2.6 Boundary Conditions

Following the above wall heat transfer model, three kinds of thermal boundary condition
are applied in this study, which are adiabatic boundary condition, a constant wall

temperature condition and constant heat flux condition.

The adi

The general form and numerical expression are
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(2-57)

The physical meaning of this boundary condition is that no heat transfer passes through

the boundary.

I wall fit

The general form and numerical expression are

I.=1(= (2-58)
T,=2T,-T, (2-59)

The physical meaning of this boundary is that temperature is on the isothermal
condition. This boundary condition can be specified for the solid-fluid interface, which is

indicated in Figure 2-5.

C: eat C

The general form and numerical expression are
q" = const (2-60)

ql
T =T2+—k’-(r2—r1) (2-61)

Because both T; and T, are unknown before each iteration, it is difficult to specify the
boundary condition which is indicated in Figure 2-6. An enthalpy-rebalancing scheme is

developed to apply this boundary condition. It is performed in the next section.
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2.7 alpv-Rebalancing Scheme

For the problem with constant heat flux condition, which is shown in Figure 2-4, it is
difficult to obtain convergent solutions. The reason is that integrating solution is
impossibly found just from its first derivative. In order to solve problems under an
arbitrary heat flux boundary condition, a novel method of enthalpy-rebalancing at the
transverse flow surface has been developed. This scheme is based on the fact that under
steady conditions the gas enthalpy rise at each transverse flow surface is equal to the heat

removal from the wall. Mathematically, it can be written as follows:

(80) =2nRAzq; (2-62)

Equation (2-62) is explicitly solved to obtain the balancing bulk temperature (T, ); ,

that is

p/i14
L) =\1,) 2-63

where T, is the bulk temperature, and Cp; is the local specific heat. In this section, (Ty );
is known. (T}, );+; can be found from Equation (2-63) which is always true in the transient
procedure based on the enthalpy-balancing principle. The bulk temperature ((T} )i+1 Jnum
is calculated from temperature fields under every iteration. Since these two bulk
temperatures should be equal, their relation may be used as a convergence criterion as

follows:

(Y;)HI

& =
((Z3)141) i

(2-64)
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Before achieving the steady-state flow conditions, the mass flux pu, is always smaller
than the final steady value. Therefore, during the transitory pre-steady state conditions the
value of & is greater than one. Whenever the mass flux approaches its steady-state value,
the convergence parameter & approaches its asymptotic value which is one. At this
moment, the wall boundary condition (2-61) is used to calculate the wall temperature. As
soon as & is equal to one, a thermal steady-state condition is achieved. At this point, the
wall temperature is fixed to control the heat transfer through the solid wall until a global
thermal convergence is achieved. This scheme has been proven successful when

problems with heat flux boundary condition are to be solved.

2.8 Conduction Model

The temperature distribution in the fuel elements is the essential to the prediction of
the lifetime behavior of these components. The temperature distribution in the fuel
dependents on the volumetric heat generation rate, fuel material properties, dimension of
the fuel element and geometric configuration. Of these the first 3 parameters are related
the neutronic design considerations, so geometric configuration is the only optional factor
via a thermal analysis. There are four types of geometric configuration, plate, pin, tubular
and square lattice honeycomb, which are commonly used in reactor fuel element design.
The configurations can be found in Figure 2-7. In order to evaluate the geometric
configuration and predict the temperature distribution, a dimensionless number is defined

as the following:

kAT
- 2-65
5(a) Y X ( )
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where q" is the volumetric heat generation rate, D, is the hydraulic diameter, k is
conductivity of the fuel materiel and AT is the difference between maximum temperature
and wall temperature and o is void parameter which is defined as

o = AFlow (2_66)

ATolal

The physical concept behind this definition is the efficiency of the conductive heat

transfer. The focus of the Delta number is on the geometric behavior of the fuel element
which is strongly dependent on the temperature distribution. The thermal conduction
equation describes the temperature distribution in the fuel element. Under the assumption

of negligible thermal expansion, the general equation of heat conduction becomes:""!

VT(x,y)+ —‘1]; =0 (2-67)

where T is temperature distribution function (K)
q" is the volumetric heat generation (w/cc)

k is thermal conductivity (J/cm/K)

2.8.1 Plate and Pin Configurations

Because of the symmetric geometry, at steady state the general conduction equation
for geometries of plate and pin reduce to a ordinary differential equation which can be
written as:

For plate,



1d dT(r)] q"
rdr(r & k0

k
D)
T(r— 5 =T,

Equations 2-68 and 2-69 can be integrated, respectively:

P AR
T(x)—Tw+8k(l 4x%),

T6) = T, + L (D* - 47),

16k
Therefore,
5 - (1-a)
Plate — 32a 2
(1-a)
8 pin = Tea?l

2.8.2 Tubular and Square Lattice Honeycomb Configurations

34

(2-68)

(2-69)

(2-70)

(2-71)

(2-72)

(2-73)

For complex geometry, such as tubular and square lattice honeycomb, partial

differential equation (2-55) can not be solved analytically. The computer code ANSYS is

used to get the numerical results.
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The general purpose Finite Element code ANSYS developed by Del Salvo et al. uses
a set of elements whose stiffness matrices have already been set up. These elements are
referred to by a pair of numbers, each identifying the type of analysis and the degrees

of freedom per node. ANSYS uses the following relationships for heat transfer analysis:

vIG)+ =0 (2-74)

These equations are solved by the Finite Element (FE) technique. To start with, a
temperature distribution is obtained based on an input reference temperature and then
properties such as thermal conductivity, are evaluated at nodal temperatures. This
procedure is continued until a convergence in nodal temperature is achieved. Physical
properties of the structural material at each node are then evaluated based on this
calculated nodal temperature. These nodal temperatures are stored in a file for later use.

The input parameters and sample input file are listed below:

Table 2-1 Input parameters for ANSYS analysis.

Parameter Symbol Value and Unit
Volumetric heat-generation rate q" 9 (W/mmz)
Surrounding temperature T, 2500 (K)
Heat-transfer coefficient h 0.0655 (w/rnmz.K)
Thermal conductivity k 0.036 (W/mm.K)
Specific heat, constant pressure G 4.44 (J/kg.K)




The sample data for ANSYS analysis:

/title, tubular
kan, -1

treff,2500

et, 1,55

iter,-1

ktemp,-1

k,1,0.0

k,2,0.278
k,3,0.62
k,4,0.791
k,5,0.791,0.53
k,6,0.371,0.6425
k,7,0.1855,0.3213
k,8,0.11,0.19
L,1,2

L,23

L,3,4

L,4,5
larc,5,6,4,-0.84
elsiz, ,50

L,6,7

L,7,8

L,8,1

a,1,4,5,6
amesh,all
wsort,X

wsort,y
Issel,line,1,4,1,1
hflow,all,heat,0.0
nall

Isall
Issel,line,5,,,1
eall
cvsf,all,z,,0.0655,2500
nall

Isall
Issel,line,6,8,1,1
hflow,all,heat,0.0
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nall

eall
kxx,1,0.036
kyy,1,0.036
c,1,4.44
g,all,9
Iwrite
afwrite
FINI
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The Figures 2-8 to 2-12 show the typical computation grids and temperature distribution

for tubular and square lattice honeycomb, respectively. The numerical results are

presented in the following tables:

Table 2-2 Variation of Delta number in tubular fuel element.

o D; AT(K) 8
0.1 1.021 162 0.7826
0.2 1.286 111 0.2681
0.3 1.576 72 0.1161
0.4 1.822 49 0.0592
0.5 2.034 33 0.0319
0.6 2.228 24 0.0193
0.7 2.407 17 0.0117
0.8 2.573 14 0.0085
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Table 2- 3 Variation of Delta number in SLHC fuel element.

o D, AT(K) 5
0.1 0.947 298 1.3297
0.2 1.341 188 0.4178
0.3 1.643 128 0.1896
0.4 1.897 88 0.0977
0.5 2.121 59 0.0525
0.6 2.324 38 0.0282
0.7 2.512 2 0.0141
0.8 2.683 9 0.0052

After polynomial fitting, the relations between Delta number and void parameter are

given as follows:

Table 2-4 Polynomial formula of the Delta number.

Configuration Delta Number
Plate (1-a)
300,
Pin (1-a)
1602
Tubular 21-189a +7360.° — 14210 ° +1357a.* —50.60.°
SLHC 383650 +14720.2 — 29440 +286.7a.* —109.4a.°

The above relations are presented in Figure 2-13.
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2.8.3 Applications of Delta Number

The delta number is similar to other dimensionless numbers in heat transfer, such as
Mach number and Reynolds number. It expresses the relationship between several
thermal parameters which are heat-generation rate, thermal conductivity, surrounding
temperature, maximum temperature and the geometric parameter. There are at lest two
important applications related to design of the nuclear fuel element: (1) to evaluate the
coolant channel configuration and (2) to predict the maximum temperature.

Delta number is function of the void parameter for several different coolant channel
configurations. From conduction of view, the optimum configuration can be determined
based on Figure 2-8. The smaller Delta number means the lower maximum temperature
in the fuel element. So the Delta number can be used to control temperature gradients,
which is important for the lifetime of reactor components.

Once the fuel surface temperature and volumetric heat generation rate have been
determined, the centerline temperature, maximum temperature of fuel element, can be
calculated from equation (2-65). This method to calculate centerline temperature, instead
of the time-consuming CFD and other iterative procedures, will remarkably simplify the
centerline temperature calculation. This method has been used by Reference [15] and

proved to be accurate and efficient.
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Figure 2-10

Temperature distribution in square lattice honeycomb fuel element (a=0.2).



Figure 2-11 Temperature distribution in tubular fuel element (2=0.2).
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Figure 2-12 Temperature distribution in tubular fuel element («=0.2).
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CHAPTER 3
THERMOPHYSICAL PROPERTIES

Thermophysical properties are very important parameters in CFD calculation. In
order to get accurate results, the real thermophysical properties of hydrogen, helium and

UF, gases are used in this study.

3.1 Dissociated Hydrogen

The data of the hydrogen property package comes from three different sources which
provide information in different temperature regions. From temperatures ranging from
13.8° to 3000 °K, data is based on the National Bureau of Standards. Above 3000°K and
up to 10,000°, the data is obtained from NASA computer programs. Above 10,000°K, the
data is generated by extrapolation of the data base. For the hydrogen properties, the data
provided by the hydrogen package is the best available at this time.

In order to get the hydrogen properties for given condition, a numerical code based
on cubic spline interpolation was developed. This code interpolates with respect to
temperatures or enthalpies and pressures to find all other thermodynamic properties, such
as density, viscosity, thermal conductivity, entropy, specific heat, speed of sound and
ratio of specific heats.

The concept of the cubic spline interpolation is to construct a cubic function S,(x) on
each interval [Xy, Xy 4;] so that the resulting curve y =S(x) and its first and second
derivatives are all continuous on the large interval [x;, xN]. The function S(x) is called a

cubic spline which has to satisfy the following equations:[36]

50
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LS(x)=4, +B (x—x,)+C,(x—x,)’ +D,(x—x,)’ (3-1)
IL S(x) =y, (3-2)
ML S, (X401) = Spur (X)) (3-3)
V. 8, (%0) = St (Xpr) (3-4)
V.S () = S0 (Xen) (3-5)

The above properties of cubic spline function are shown in Figure 3-1.

The general form of cubic spline equation S,(x) is the following expression:

Y _ S WX 401 = Xz)

3 S"(x, (X0 —x)3 _ S"(X 1 )X, _x)3 +

5 ()= 6(x,, —x,) 6(x ., —x) (xk+1 - X 6 W =2) -
( Vet S"(X 4 WXk —xk))(xk —x)
Xpel ~ X 6
3.6)

Now use the properties IV and V to obtain an important relation with respect to x,,

Xi+1s Yk and Yi+1:

S"(x, )X, —x, 1) + S"(x WX =% 1) + S"(X) 0 )N Xpp —X,) _

6 3 6 3.7)
(Vo1 =Y1) + Ve Vi) .
Xpa1 —%y Xy =X

This equation is a system of n-1 linear algebraic equations to be solved simultaneously.
Its coefficient matrix is tridiagonal matrix. The linear system is diagonally dominant and
has a unique solution. After the linear system is solved, the unknowns, S”(xy.;) , S”(xx)
and S”(Xy.), are determined. The interpolation value can be calculated from equation
3.7).

This code was used to draw 8 sets of curves that look very smooth when viewed by

the eye. The curves are shown in Figures 3-2 to 3-9.
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3.2 Helium Gas

The thermophysical properties, heat capacity C,, viscosity n and thermal
conductivity K., based on the references [34] and [45] are used throughout the

calculation. The formula of polynomial fitting are generated as follows:

C,(kJ / kg.K)=-83799x107 T? + 351145x10 T + 087076 (3-8)

35761x1077T° —8.4466x107* T? +0.9091397 + 159283
1.0’

w(N.s/m)= (3-9)

0257455T + 954545
10°

KW/mK)= (3-10)

3.3 Uranium Tetrafluoride Gas

Thermophysical properties of UF, gas used throughout the calculation are given
by Equations (3-1 1)-(3-13).[3] In these equations, C, is heat capacity, p is dynamic
viscosity and K, is thermal conductivity.

Analysis of existing data and rigorous theoretical calculations are used to developed

the following heat capacity equations for the gaseous UF, in 1000° to 10,000°K range.

3.06x10°

C,(J/mol K)=1215+224x10°T - =

[T<3500°K] (3-11)

C,(J/mol. K)=12412-128x10°T [ T>3500°K ] (3-12)



53

Using the semi-empirical relations for related transport parameters, the viscosity of

UF, in 1000° to 10,000°K range is developed[3°] as follows:

3357x10°¢JT
a+bT

n(Pa.s)=
where a=08 b=-71x10"° [T<3500°K]

a=067 b=-204x10" [T>3500°K]

Thermal conductivity of UF, gas is estimated as:

K07 I mK)=32u(C, +10393)

where heat capacity C, is in J/mol.K, and the viscosity p is in Pa.s.

(3-13)

(3-14)
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Figure 3-1 « Cubic spline interpolation.
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CHAPTER 4
ASSESSMENT OF NUMERICAL MODELING

In order to check the assessment and validation, several problems have been carried
out to compare with published results. Excellent agreement with theoretical and
experimental results has been obtained. The details of the tests are indicated in the

following sections.

4.1 Drag Measurement and Separation Angle

Fluid flow studies over a sphere which is bounded in a cylindrical tube is of
fundamental importance and has received attention for bounded flow. This is typical
model for the low-drag measurement and determination of fluid viscosity. One of the
parameters of paramount importance for the fluid flow over a bluff body is the separation
angle. It is required for the drag force calculation and very difficult to ascertain by
experimentation. In this study a numerical analysis is performed to observe the
dependence of the separation angle on the diameter ratio between the sphere and the
cylinder (y). This study is based on the assumption that the Reynolds number is fairly
high but low enough to have a laminar boundary layer. Figure 4-1 to 4-4 illustrate the
flow patterns and separation angles for the cases y=0.3, v=0.4, y=0.6 and v=0.8,
respectively. The results show that the separation angle reaches a minimum around y=0.5.
This result provides very good agreement with following semi-empirical equation which

is based on the boundary layer analysis:[3 2
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©(0.9277) + @ (2.095y 2 - 0.3641)+ *(3.2466y * — 15495y * +0.039)+

5-1
+@7(4.396y © —13.4907y * + 04687y 2 —0.0015)=0 (>-1)

where @ is function of separation angle. The following table provides the numerical
results to compare the boundary layer approximation:

Table 4-1 Comparison of separation angle between numerical calculation and boundary
layer approximation

DIAMETER RATIO SEPARATION ANGLE (DEGREE)
Y Numerical Calculation | Boundary Layer Approximation
0.3 110.0 108.46
0.35 107.8 102.59
04 105.8 92.61
0.45 103.9 90.33
0.5 104.0 88.35
0.55 105.7 88.98
0.6 107.6 90.53
0.65 109.1 96.03
0.7 110.5 106.16

The comparison is shown in Figure 4-5.
An experiment was performed to measure drag force on a ball by using a Cahn
instrument manufactured C2000 model microbalance. Teflon balls of different diameter

were centrally hung in a long cylindrical tube of diameter 22.54 mm. The spheres were
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suspended by means of a fine nylon string (d=0.07 mm), which can be found in reference
[24]. A numerical investigation was carried out to compare with the experimental results.

The drag force can be found from the following formula:

d du
Drag= Y% (5-2)
i=1 ¥

where L, is viscosity.
Figure 4-6 provides the comparison between the numerical and experimental results.
It is shown that by increasing the number of grid points on the sphere, the drag force

results finally approach the experimental values.

4.2 Empirical Correlations of Nusselt Number

Among the long list of correlations for the Nusselt number, axial distance corrections
and property corrections, the following correlations which have the more relevance to
heat transfer in a nuclear reactors are chosen to justify the validity of computational

results.[l 5:38]

(1) Empirical Correlations of Nusselt Number

1. Colbum correlation (1933)

1

Nu = 0.023Re®® Pr? (4-3)



2. Dittus-Boelter correlation (1930)

04 T,>T,

= 08 n =
Nu=0.023Re™ Pr n {0.3 T <T,

3. Seide-Tate correlation (1936)

0.14
Nu = 0027 Re®® Pr”{ﬁJ

K.

4. Gnielinski-Petukov correlation (1970)

(Re-1000) P{g)

Nu= 3
3 ] }f
1.07+12.7(Pr3—1 Py

5. Karman-Boelter-Martinelli correlation (1960)

RePr\/%
Nu =
| ral
el

0833 5Pr+ 5In(5Pr+1) + 25|»tRe A

l

where

1
f =0.0014+ s Re™**
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(4-4)

(4-3)

(4-6)

(4-7)



6. Notter-Sleicher correlation (1975)

Nu=50+0015Re” Pr’

where
024

Pr+4

a=088-

1
b= 3t 05e7%¢"r

7. Churchill correlation (1977)

(2300-Re
e 365

1

(

where

= 4364 1
a=4364 1+( =7

J

b=43641+

L

0079RePr./f

] 1
[Re Pr DT Ic
+

(287 Re PrD)z s

(1+Pr*s)”

1

J

(2) Axial Distance Corrections for Nusselt Number

1. Perkins and Worsoe-Schmidt correction (1965)

T

|
|

2

-5
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(4-8)

(4-9)

(4-10)



2. Pierce correction (1963)
rl . { Z )-047 "|
=1+ p) |
3. Bussard correction (1965)
[ 2 -015']
/. =[1.957(1+B) J
4. Reynolds-Swearington correction (1965)

_ﬂ:{u4mﬁ=7qmmRa”(%Tq

(3) Property Corrections for Nusselt Number

1. Notter-Sleicher property correction

o

2. Volkov-Vanov property correction

—(L—J—O.SS
So= T
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@-11)

4-12)

(4-13)

(4-14)

(4-15)
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3. Perkins and Worsoe-Schmidt property correction
Tw -0.7
o=l (4-16)

Figure 4-7 compares the numerical results with four Nusselt number correlations.
These correlations include the Colburn equation, the Gnielinski correlation, the Karman-
Boelter-Martinelli equation and the Notter-Sleicher correlation. Figure 4-7 shows that
numerically calculated Nusselt number with some of empirical correlation results is
almost undistinguished. This comparison not only evaluated the empirical correlations of

Nusselt number, but also assessed the validation of numerical modeling.
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CHAPTER 5
RESULTS AND DISCUSSION

This chapter is composed of three parts. The first part presents the numerical results
for the fluid flow and heat transfer in the core of a gaseous core nuclear reactor. UF, gas
is used to simulate the flow of a Ultrahigh Temperature Vapor Core Reactor with
Magnetohydrodynamic generator (UTVR-MHD) system. The second part describes the
numerical results for fluid flow and heat transfer in the core of a gas cooled reactor.
Helium gas is utilized in this part. The last part indicates the results for the fluid flow and

heat transfer in XNR2000 nuclear rocket core. Hydrogen gas is considered in this study.

5.1 _Calculations for a Gaseous Core Reactor

A gas core reactor uses a gaseous fissile material as fuel for power generation. This
allows for power generation at temperatures much higher than the melting point of solid
fuel nuclear reactors. Power generation and power conversion at very high temperatures
can potentially reduce the system mass and improve the specific impulse of a nuclear
thermal rocket. One of the most challenging issues related to design and operation of gas
core reactors is the containment of the fissioning plasma. The wall cooling is the most
important issue in design of gaseous core nuclear reactors. The heat transfer process
involved in an ultrahigh temperature gas core reactor systems is characterized by the
convective flow of a radiating gas. Uranium and uranium compound gases even at pressures
in the range of 10 to 40 atm are optically thick. At temperatures close to 3500°K which is

the typical exit temperature of the reactor core in a recent design,[m the radiative heat
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transfer rate in these opaque gases is higher and comparable with the convective heat
transfer rate."”) Therefore, the heat transfer analysis of a fissioning gas must include both
convective and radiative transfer. The flow and radiation transport equations must be solved
simultaneously in order to determine the temperature distribution and heat transfer rate.*%4

The model presented in this paper considers combined convection and radiation of
compressible, turbulent and developing flow of a radiating gray gas under very high
temperature conditions. Although the combined convective and radiative heat transfer
problem has been the target of many investigations, a comprehensive numerical solution of
this problem has not yet been published.[21’32]

The case selected for this analysis consists of a cylindrical tube 1m long and 0.05m
in diameter, i.e. zZD=20. The constant wall temperature is set at 1600°K, and total inlet
temperature is specified as 2000°K, which is a typical design temperature at the core inlet
of the ultrahigh temperature vapor core reactor system. A stagnation inlet pressure of 2
MPa, the back pressure of 1.8 MPa and three different values of internal heat generation
rate of 100 MW/m>, 500 MW/m® and 1000 MW/m® are used. The Reynolds number is
ranged from 10°to 10°.

The flow domain is divided into 54 radial and 54 axial control volumes spaced non-
uniformly. A fine grid, defined by algebraic method, was used near the wall to ensure

more than two grid points in the laminar sublayer, as shown in Figure 5-1.

5.1.1 _The Temperature Distribution

The temperature distributions, which are obtained at a constant wall temperature of
1600°K and inlet stagnation temperature of 2000°K, are used for verification of effect of
internal heat generation rate and are presented in Figure 5-2. The relations between
temperature distribution and internal heat generation rate will be discussed in the next

section. The numerical results are compared with the results of Hoogenboom et al.l'®
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Figure 5-3 shows that the maximum temperature and the trend are almost
undistinguished. The Nusselt number for pure convection is compared with the results of
Petukhov-Kirillov-Grielinski equation, which is shown in Figure 5-4. The differences
between those two results are less than 3% at the tube exit (z=lm). The excellent
agreement between the present model and the previous literature indicates the validity of
the numerical modeling for gaseous core reactors.

All of the above results are obtained from the solution of the flows at the steady-
state. In order to verify the steady state solution, the convergence history for the velocity
and temperature residual is examined, as shown in Figure 5-5. In this case, the steady
state is reached when the root-mean-squared residuals of velocity and temperature drop 5
and 4 orders of magnitude in about 900 iterations or 300 minutes of CPU time using a

486-66 computer. The velocity and temperature residuals are defined by

,-g jjg, Ku“j —u,"jlj +(v,.J—V,-"]'7] (5-1)
(¢ max)(j max)

o5, =

1

5506, -n)7 (52)

i=| j=|

8= (imax){j max)

5.1.2 Effect of Heat Generation Rate

Gas core nuclear reactors are characterized by high internal heat generation rate in
the fissile gas. The numerical model is used to predict the temperature distribution and heat
transfer rate for the gases with internal heat generation. Uniform heat generation rates
ranging from 100MW/m’ to 1000MW/m’ are included in the energy equation as source

terms.
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In Figure 5-6, the temperature distribution is presented for the three different values of
heat generation rate. Because of the radiative heat transfer, the curves become more flat and
grow faster than those of pure convection. The convective heat flux at the wall increases as
the power generation rate increases. The Figure 5-6 also shows that the temperature at a
heat generation rate of 1000 MW/m’ increases more rapidly than others because the
radiation at high temperature is more dominant.

The maximum temperature, corresponding to the heat generation rates, are 2150°K ,
2750°K and 3550°K, respectively. This is indicates that a heat generation rate higher than
1000MW/m® is necessary to maintain the gas temperature at about 3500°K, which is
typical temperature required to achieve high efficiency in the gas core reactors.”” The
bulk temperature gradient at the wall is steeper than it would be in pure convection, which
is shown in Figure 5-2. These results indicate that the maximum temperature in the reactor

is strongly dependent on the value of heat generation rate.

5.1.3 Convective and Radiative Heat Fluxes

The heat fluxes are presented for both convective and radiative heat transfer. The

convective, radiative and total heat flux transferred to the wall are calculated using the

following equations:m]

’]-puCP Trdr | - l]puC,, Trdr |,
(Y] 0

- Q r+Ar (5_3)

x

%= RAx

BTJ (5-4)

9, =9, -4, (5-5)
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where q,, q. and q, are the total, convective and radiative heat fluxes, respectively. The
convective and radiative heat fluxes for the three different cases are presented in Figure 5-
7. As the heat generation rate increases, the corresponding heat flux increases. It is found
that at temperature close to 3500°K the radiative heat transfer rate is comparable with the
convective heat transfer. It is seen that the radiative fluxes increase as higher wall
temperatures. This behavior is due to the fact that the radiative wall heat flux is dependent

on the local conditions at the wall.

5.1.4 Nusselt number calculation

Nusselt number is the parameter which characterizes the heat transfer rate at the wall

boundary. The total, convective and radiative Nusselt number can be defined as:

q.D
= (5-6)
M=, -1)

___aD 5-7
Nu'_k(Tw—Y;) (5-7)
Nu, = Nu_+ Nu, (5-8)

Figure 5-8 illustrates the relation between local Nusselt number and Reynolds
number. It is found that the Nusselt number increases as the heat generation rate
decreases. This is mainly due to the increase of dynamic viscosity of UF, gas as
temperature increases. Figure 5-8 also shows that the entrance length increases as the

Nusselt number decreases.



0l kT4

111
1Nt
\f

I

1
i
e

wall

1l

i

80

111,

entrance

Figure 5-1 Overall view of grid system.

exit



81

T.K

2,
1.800

1,700

r,m

0.015

o
=]
o

RN

N

NN ALY
R

NN

o3
=5
S

s

&5
%

=

o

Z%
Xz

-
Z7

-
o

o
e
s
-
zz2%
2%
e
LT

s

AN
A
.........
NK
XK
NV
bl
iy
Solilul
il
I
7

o
o
525
e,
e
ZTrZs
775
.
227

\

=
o
ot
Gl
oo
S
7
=275
2
22

e
G TS
==
s,
QLT
722
222
oot
2
2
2

h,
s
$~§

Z
==
=i
=5
o
e
So

S

oS
i
25
-,
222
2

//I//I’/”/”I
”’I’/”’I’I
e
S
Ztorel o7
s
2222
eiees
R

o
s
55
353
£5s
s
et

s
.
o

=3

253
%
o2

.
25

==

o
s
s

.
.

N

P
.
=55
$s
=,

5
=
o
555

o5

g 257
o

10n
fferent values of heat generati

3 d (3) Q=1000 MW/m’.
’, (2) Q=500 MW/m” and (

ion ford

)

€]

ature distribut

f temper.
100 MW/m

arison o
(1 Q

2 Comp
rate

Figure 5-



82

3,600

/}
/

«
4

3,400

3,200

3,000

2,800

2,600

T (K)

2,400

—>— Hoogenboom et al. [12]
—8— the present study

2,200

2,000

1,800

IR RS AN EEEAE REEE SRR

1,600

0.005 0.01 0.015 0.02 0.025

(=}

r (m)

Figure 5-3 Temperature distribution comparison between results obtained with the
present methodology and by Hoogenboom et al.



2,300
2,200
2,100
2,000
1,900
1,800
1,700

Nusselt Number

1,600
1,500
1,400
1,300

Figure 5-4 Convective Nusselt number comparison between results obtained with the

—>— Gnielinski correlation
—8&— The present study

| E

i

83

present methodology and by using Petukhov-Kinllov-Gnielinski correlation.
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5.2 Calculations for a Gas Cooled Reactor

Over the past few decades, high temperature gas cooled reactors (HTGRs) have been
considered for a wide range of applications. Compactness, high efficiency and very high
temperature capability of these reactors are of great importance to power generation in
space. Other applications of HTGRs include: terrestrial electric power generation, nuclear
thermal propulsion and direct use of high temperature gas for a variety of industrial
processes such as steel-making.[w] The technology of HTGRs for commercial power
generation, as well as the computational methods for analysis of thermal fluid
performance of these reactors are well developed. The majority of existing HTGR
thermal fluid analysis methods use empirical correlation to resolve heat and momentum
transfer at the fuel-coolant boundary. However for HTGR concepts with operating
parameters beyond those of commercial HTGRs, the issue of the accuracy and
applicability of empirical correlations are not fully resolved. In particular, energy
transport in very compact space power reactor concepts may require flow at very high
velocities and high Reynolds numbers. This study presents a non-correlation based
computational thermal-fluid model to analyze flow and heat transfer in HTGR cores. The
computational model is also used to assess the performance of several mechanistic
correlations for calculation of pressure drop in HTGR

A dual path cermet fuel fast spectrum reactor is used as a computational model to
analyze the high-temperature gas-cooled reactor system. The core consists of 631 fuel
rods and 37 holes per fuel rod which has a flow-equivalent diameter of 3.2 mm and
heated length of 0.544 m. The stagnation inlet pressure of 6.5 MPa, the back pressure of 5
MPa and the core power of 25 MW, 50 MW, 75 MW and 100 MW are used,
respectively. The Reynolds number of the flow is in the range of 10* to 10°.

The flow domain was divided into 54 radial and 54 axial control volumes spaced

non-uniformly. A fine grid, defined by an algebraic method, was used near the wall to
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ensure more than two grid points in the laminar sublayer which is used to control the heat
flux near the wall. Figure 5-9 shows the flow pattern which presents the typical velocity

distribution of turbulent flow.

5.2.1 Temperature Distribution

The maximum temperature in the HTGR reactor is strongly dependent on the power
density. To demonstrate the influence of power density, a calculation was done with core
power of 25 MW, 65 MW and 100 MW. The temperature distributions under three
different core powers are shown in Figure 5-10. The maximum temperatures,
corresponding with the core power, are 1500°K , 2200°K and 3000°K, respectively. This is
indicates that a core power higher than 100MW is necessary to maintain the gas
temperature at about 3000°K. Because of high heat flux the derivative of temperature at
the wall is much higher than the derivative of temperature at the center area. The
temperature at Q=100 MW grows much faster than temperature at Q=65 MW. The bulk
temperature and pressure distributions for different mass fluxes are shown in Figures 5-11

and 5-12, respectively.

5.2.2 Nusselt Number Calculations

Nusselt number correlations are of great importance to calculation of heat transfer.
However, almost all of these correlations are developed under fully developed and
constant wall heat flux conditions. In some cases the heat flux used for the generation of
the experimental data base is rather low. The low wall heat flux indicates small
temperature gradient in the flow boundary layer. Therefore the changes in flow
properties due to temperature gradient may not be important. Under flow, temperature

and heat flux conditions of ultrahigh temperature and compact HTGRs, similar to those
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proposed for space power and propulsion applications, the flow is not fully developed, so
the temperature gradient could be very large. So, the wall thermal boundary conditions
may be different from what is used for the development of the experimental data base
used for the derivation of the particular heat transfer empirical correlation. Thus, the
detailed computational analysis developed in this work is used to evaluate the most
common experimental correlations for wall heat transfer in HTGRs.

Nusselt number variation along the tube length is shown in Figures 5-13 and 5-14.
From the results of this study, the Nusselt number increases as the core power increases.
The differences of the Nusselt number of core power of 25 MW, 50 MW, 75 MW and
100 MW at x=0.554 m are about 14% and differences of the Nusselt number of mass flux
of 45, 60, 75 and 90 kg/m"2.s is about 29.5%. It is interesting to note that the core power

and mass flux have similar effects to Nusselt number.

5.2.3 Pressure Drop Calculations

Similarly, simplified equations are used to calculate the pressure drop in heated
channels of HTGRs. These equations may or may not be applicable to the flow and
thermal conditions of ultrahigh-temperature gas-cooled reactors. An analysis is performed
to evaluate the accuracy and validity of the pressure drop equations for HTGRs.
Equations which are conveniently used to calculate the accelerational and frictional

pressure drop in HTGR cores are:

T, AZ{T +T,
_ B AZ|L+T 59
AP pV[(Tl 1J+2fD[ 2T ﬂ (5-9)
RGT AZ
aP="= ’"[ln—pp—'+2f3] (5-10)
m 2



Figure 5-9 Flow pattern for gas cooled reactors.

91



1,600 ] 1,600
! { f
1400 3 | 5 | | j | 1,400
1200 : J I ! 1,200
TK 1,000 5 1 L 1,000
! 300 7
E }800
600 -
E E 600
400 4 F
3 400
200 3
0.0016 200
0.0012
0.0008 - 0.4 0.5
Lm 0.3
’ 0.0004 0.2 zZ,m
0.
0o o
2,200 2,200
2,000 3 4‘ f J 2,000
1,800 3 ; ’ i E 1,300
1600 3 | [ J E 1600
1,400 ; | f— 1,400
T.K 1200 3 E_ 1,200
10%0 1,000
800 3 =
600 3 ] - 800
400 _:; ;_600
200 3 E_ 400
0.0016 E_ 200
0.0012
0.0008 04 0.5
rL,m 03
’ 0.0004 02 zm
0.1
0 0
3,000 3,000
2,500 lr J F 2,500
2,000 f _2000
T,K 1300 5 F 1,500
1,000 ‘ a
s F_ 1,000
500 -
E F 500
0] g
0.0016 Lo
0.0012 g
< 0.5
0.0008 o3 0.4
L m 0.0004 02 " zm
0.1
()

©))

T,K

T,K

T.K

92

Figure 5-10 Comparison of temperature distribution for different valued of core power:

(1) Q=25 MW, (2) Q=65 MW, (3) Q=100 MW.
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Figure 5-15 shows the axial pressure distribution in the heated flow channel as
calculated by the detailed Navier-Stokes solver and also by Equations (5-9), (5-10) and
(5-11). In Figure 5-15, Incm implies equation (5-9) which is found in Reference [2];
Coml implies equation (5-10) and Com2 implies equation (5-11) which can be found in
Reference [22]. From this analysis it is evident that the equation (5-9) provided the best
agreement with the numerical results. This is mainly due to the fact that the thermal
evolution of the flow is taken into account in the equation (5-9), which is much closer to

the governing equation used for the CFD calculation.

5.3 _Calculations for XNR2000 Nuclear Rocket Core

The XNR2000 is a fast-spectrum cermet-fueled nuclear reactor that heats hydrogen
in a two-pass folded-flow configuration and delivers the hydrogen propellant to the
nozzle chamber before expansion through a nozzle.'* The total engine flow rate is 12.1
kg/s and cycle operates at a chamber pressure and temperature of 5.5 MPa and 2850°K.
The engine delivers 111.2kN of thrust at a thrust to weight ratio of 5.1 and a specific
impulse of 944 seconds including kinetic and boundary layer effects in the nozzle. The
XNR2000 reactor core consists of 90 fuel elements in the outer core and 61 in the inner
core. the equivalent inner core diameter is 29.2 cm while that of the outer core 1s 45.94
cm.

This study considers a turbulent flow of hydrogen in a circular tube with a variety of
thermal boundary conditions. The computational models are used to evaluate and
compare the applicability of a number of widely used correlations for Nusselt number to

the high temperature and high heat flux conditions of hydrogen cooled nuclear rocket
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cores. In these systems the surface heat flux ranges from 10 to 1000 MW/m? , the flow
channel outlet temperature can be as high as 3200° K, the ratio between diameter and total
length varies from 150 to 1000 and the Reynolds number of the flow is in the range of
10* to 10°. The total flow length in this design is 0.55 m, and the tube diameter is
0.0032m resulting in L/D=165. The grid mesh is 90x50. A stagnation inlet pressure of
6.85 MPa and an back pressure of 6.55 MPa are used. The thermal boundary conditions
and Reynolds numbers for two cases considered in this section are listed in following

table:

Table 5.1 Thermal conditions and Reynolds number for XNR2000 rocket core.

Case T, (K) T, (K) q” (MW/m”) | Reynolds Number
T (Uniform Ty) | 500 | 500+23002L 5 20000
2 (Uniform q’") 500 - 7+15sin(nz/L) 15000

In computation procedure, approximately 1000 time steps and 5 seconds CPU time
per time step are required to reach a steady state. The final temperature residual is less

than 0.00001.

5.3.1 Non-dimensional Velocity and Temperature Profiles

The non-dimensional velocity profiles for the uniform heat flux boundary
condition case are presented in Figure 5-16. It can be seen that the profiles rapidly
accelerate very near the wall before flattening out and increase slightly toward the
centerline, which is characteristic of turbulent velocity profiles. The flow reached a fully
developed state within 20.9 diameters of the entrance. This is very close to the results
obtained by Barbin and Jones.'® The non-dimensional temperature profiles are shown in

Figure 5-17. This figure illustrates high temperature gradients at the inlet region and
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flattens out downstream as the bulk temperature increases. The temperature profiles
achieve fully developed conditions at the approximate 121.9 diameters from the tube
entrance. These results indicate that a velocity profile achieves the fully developed regime
before a fully developed temperature profile is obtained, that is the thermal entrance
length did not exceed the hydrodynamic entrance length. Due to temperature dependent
properties used for hydrogen, the temperature profiles shown in Figure 5-17 are slightly
different for those predicted for constant properties. Viscosity and thermal conductivity of
hydrogen are strong functions of temperature. They lead the values for hydrogen to be

significantly different at the wall and at the centerline temperatures.

5.3.2 Nusselt number calculations

The Nusselt number was calculated for both cases listed in the Table 5.1, as shown in
Figure 5-19. This figure indicates that the magnitude of Nusselt number appeared to be
mainly affected by Reynolds number. The higher the Reynolds number, the higher the
Nusselt number. The shapes of the two cases have different characteristics. Downstream
of the entrance the Nusselt number gradually increased, after initially decreasing for
uniform heat flux case, exhibiting a slight difference with the uniform wall temperature
case. It is due to that the trend of Nusselt number for case 1 is mainly dependent upon the
magnitude of dT/dr, but for case 2 it is mainly dependent upon the difference between T,
and T,. So, these different trends between the uniform wall boundary and uniform heat
flux boundary result in a slightly different heat transfer mechanism.

Among the long list of correlations for the Nusselt number, four correlations which
seem to have more relevance to the heat transfer in a nuclear rocket core are chosen for
this analysis. It should be noted that some of these correlations have been developed
based on experimental data which are not fully compatible with the boundary conditions

used in cases analyzed here. These correlations are used as a point of reference not to
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justify the validity of computational results. Figure 5-18 compares the numerical results
with four Nusselt number correlations without axial distance and property corrections.
These correlations include the Colburn equation, the Gnielinski correlation, the Karman-
Boelter-Martinelli equation and the Notter-Sleicher correlation. the Gnielinski

B3] where the

correlation"® is an updated version of the Petukhov-Kirillov correlation
range of Reynolds number and Prandtl number has been expanded. For the high
temperature and high heat flux hydrogen flow cases, a correction factor for the axial
distance and real gas property must be used. Figure 5-19 shows a comparison between
the numerical results and the Nusselt number correlations when the axial distance and
property corrections are applied. The Petukhov-Kirillov-Gnielinski equation, when
combined with the Perkins and Worsoe-Schmidt axial distance correction and the Notter-
Sleicher property correction has the best agreement with the numerically calculated
Nusselt number, differing by less than 3% at the last section measured.

Figures 5-18 and 5-19 vividly show the importance of using distance and property

corrections.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

A computational model based on the axisymmetric, thin-layer Navier-Stokes
equations has been proposed to investigate the convective, radiative and conductive heat
transfer in nuclear reactors. An implicit-explicit, finite volume, MacCormack method in
conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the
governing equations. The subsonic and supersonic flows of Hydrogen, Helium and
Uranium Tetrafluoride under variable boundary conditions, such as adiabatic, isothermal
and constant heat flux, are employed to simulate coolant flow on reactor cores. An
enthalpy-rebalancing scheme is implemented to allow the convergence solutions to be
obtained with the application of a wall heat flux. A two-dimensional method based on
finite element technique is used to investigate the geometric behavior of nuclear reactor

fuel elements. Using the developed models the following studies have been completed.

1. Thin layer Navier-Stokes equations Due to the flow field at a high Reynolds

number, the thin-layer Navier-Stokes equations are used as the governing equations in
this study. In the thin-layer approximation to the full Navier-Stokes equations, the
viscosity terms containing derivatives parallel to the body surface, which are in inverse of
Reynolds number, are neglected. As a result, a substantial fraction of the available
computer storage and time is expended in resolving the normal gradients in the boundary
layer. In these calculations, the values of y" at nearest the wall are less than 2. So a highly

stretched grid system is generated to lead stability and convergence. Good agreement
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between the computed results and prior calculations in the literature indicate the validity

of the governing equations.

2. Numerical modeling A hybrid implicit-explicit, MacCormack scheme based on the
finite volume approach is employed to solve the governing equations. This numerical
algorithm has a rapid convergence compared to a simple explicit method. Normally, less
than 1000 iterations are needed to reach the steady-state for any flow conditions and any
fine grid system taken. MacCormack method is one of the most efficient of the second-
order scheme and the most popular two step Lax-Wendroff method for solving problems
with shock-capturing schemes. The calculations of this study indicate the good stability,

consistency and efficiency.

3. Turbulence model The Baldwin and Lomax two-layer algebraic turbulence model
is used in this study. For this turbulence model, the effects of turbulence are simulated in
terms of an eddy viscosity coefficient p,. Thus, in stress terms of Navier-Stokes
equations, the molecular coefficient of viscosity p is replaced by p-+p,. This model
simplifies the calculations of turbulent kinetic energy and eddy diffusivity of energy and
avoids the necessity for finding the edge of the boundary layer. It is used to yield faster

convergence at reasonable accuracy.

4. Radiative heat transfer model The Rosseland diffusion approximation is used to
simulate compressible, turbulent and developing flow of a radiative nongray gas in gas
core reactors. A well-known Rosseland mean absorption coefficient is adopted for the
approximation, which successfully made use of the diffusion theory in the radiation
calculation. This method is simpler to formulate and calculate in radiation heat transfer.
Good agreement between the computed results and the previous calculation in the

literature indicates the accuracy of the Rosseland radiation model.
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5. Thermal conduction model A Finite Element code ANSYS is used to investigate
the geometric behavior of fuel elements of a reactor core, which include plate, pin,
tubular and square lattice honeycomb. Based on the investigation a dimentionless
number, & number, is defined with respect to void parameter a. The & number can be
used to control temperature gradients, which is important for the lifetime of reactor
components. The & number also provides an efficient method to calculate the centerline

temperature, instead of the time-consuming CFD procedure.

¢ Two boundary
conditions, constant wall temperature and constant wall heat flux, on the outside surface
of straight tube were included within the study. The relation of the boundary conditions is
found based on the Fourier’s law. The difficulties in obtaining converged solutions with
heat flux boundary conditions were addressed. An enthalpy rebalancing scheme was
developed. The implementation of the enthalpy balancing scheme allowed convergent
solutions to be obtained with the application of a wall heat flux. This method has been

proven successful when problems with heat flux boundary condition are to be solved.

/. Validation of modeling The numerical models were used to calculate the

separation angle and drag force over a sphere which is bounded in a cylindrical tube. For
this classic project, good agreement between numerical results and the measured data in
the experiment indicated the validity of the developed models. Many different Nusselt
number equation, property corrections and axial distance corrections were investigated to
qualify the numerical calculation. Results demonstrated that the Petukhov-Kirillov-
Gnielinski equation combined with Perkins and Worsoe-Schmidt axial distance
correction and the Notter-Sleicher property correction is the most relevant to this study.

This results also implied the assessment of the numerical models.
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8. Internal heat generation The effect of internal heat generation on the heat transfer
in the gas core reactors is examined for a variety of power densities, 100W/cc, 500W/cc
and 1000W/cc. The maximum temperature, corresponding with the heat generation rates,
are 2150°K , 2750°K and 3550°K, respectively. This analysis shows that the maximum
temperature is strongly dependent on the value of heat generation rate and also indicated
that a heat generation rate higher than 1000W/cc is necessary to maintain the gas
temperature at about 3500°K, which is typical temperature required to achieve high

efficiency in the gas core reactors.

9. Convective and radiative heat flux The convective and radiative heat fluxes are

predicted for the gas core reactors. The maximum value of heat flux occurs at the exit of
the reactor core. Radiative heat flux increases with higher wall temperature. This
behavior is due to the fact that the radiative heat flux is strongly dependent on wall
temperature. This study also found that at temperature close to 3500°K the radiative heat

flux is comparable with the convective heat flux.

The above accomplishments clearly demonstrate that the numerical model for
convective, conductive and radiative heat transfer has the ability to simulate the heat
transfer performance of nuclear reactor cores. This model can be used to predict the
important information about heat transfer in nuclear reactor systems, and to qualify the
classic empirical correlations which have been used for many years. There is no doubt
that the numerical model is a reliable computational tool for heat transfer analysis in

nuclear reactor analysis.
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heat generation rate. |t also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperatre at sbout 3500°K,
which is typical design temperature required to achieve high efficiency in the gas core reactors. The model is also used to predict the convective and
radiation heat fluxes for the gas core reactors. The maximun value of heat flux occurs at the exit of the reactor core. Radiation heat flux increases with
higher wall temperature. This behavior is due 10 the fact that the radiative heat flux is strongly dependent on wall temperature. This study also found that
at temperature close 10 3500°K the radiative heat flux is comparable with the convective heat flux in & uranium fluoride failed gas core reactor.
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